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1 Recall

From Week 1, we discuss the follows:

Euler’s first order condition
If f(x) is continuously differentiable, ) # K is an open set in R” and
x* € K is an optimal solution to (P), then

Vfx*)=0

In the previous lecture, we introduce a problem (P) and the feasible set K as follows:

gi(x) <0, i=1,...,¢

inf subject to
inf, flw)  subj {hj(x): Ci=1....m

reR”

where f, g;, h; € C', and

K={zxeR":g(x) <0, hj(zx)=0,i=1,....¢, j=1,...,m}

Also, we have the following theorems related to KKT condition and proved in the last lecture.

Theorem 1. Assume that ©* € K is an optimal solution to (P), then there exists po > 0, p1,...,p¢ >
0, q1,---,qm € R such that the following holds:

1. <p07p17"‘7p€7q17"'7qm) % 0

¢
2. pigilat) =0 <= pigi(a®) =0, Vi=1,2,....¢
i=1
l m
3. poVf(x™)+ Zingi(:c*) + quth(x*) =0
i=1 =1

2 Qualification Condition

Definition 1. We say the constraints K is qualified at z € K if p; > 0 and ¢; € R satisfy
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Now, when (P) has an optimal solution z* € K and constraints K is qualified, the following
theorem is introduced.

Theorem 2. Let x* € K be a solution to (P) and assume that K is qualified at x*. Then there exists
A, oo, e > 0and py, - - - o, € R such that

V4
Z)\igi(x*) =0
+Z>\Vgl +Zujwz

Proof. From|Theorem 1} if * € K is a solution to (P) and K is qualified at =*, there exist

(p07p17"'7pf7QI7"'7qm) ;é 0

such that

¢
Z pigi(z*) =0
i=1

(*)
p(]Vf + szvgl + Z qJVh
Now, if pg = 0, then (x) becomes
> _pigila") =
szvgz Z quhj (l'*) =0
By the Qualification condition, this implies thatp; = --- =py = ¢ = - -+ = ¢, = 0 and hence
(p07p17 - Pes 41, - - an) =0
Contradiction arises! Thus, we have pg > 0 .
Dividing the second equality of (x) by po gives
+ 3 B+ 3
Thus, it is natural to put \; = i >0fore=1,...,0and p1; = 4 ceRforj=1,...,m. [
Po Po

Let’s see a simple example for the importance of qualification condition.
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Example 1. Solve the following problem

minz, subjectto 2% =0
z€eR

Solution. As there is one variable problem, so putting n = 1, f(z) = x. Since there is no inequality
constraint, so £ = 0. There is one equality constraint, so m = 1, and let hy(z) = 2.
It is easy to see that z* = 0 is an optimal solution to the problem as {z € R : 2° = 0} = {0}.

From |Theorem 1} there exists (pg, g1) # 0 such that
Po Vf(iﬁ*) +q1 Vh1 (33*) =0
—_—— —_——
FO=1 =0

Thus, pg = 0, which means the qualification condition of the [Theorem 2|is not satisfied. <

3 Formal Justification of [Theorem 2|

For the expansion of it looks quite similar as “Lagrangian”. Indeed, we can rewrite the
problem I(n)igo f(x) as follows:
9\T)>

h(z)=0

min  f(2) = min ( sup  f(x)+ A g(x) + - h(gs))

g(x)<0,h(z)=0 z€RE \ A\>0, pueR
? .
O up (mmf<:c> Fh-gle)+p- h(x))

A>0,ucR \ T€R
= min f(z) + Xg(z) + p*h(z)

Denote L(x, A\, 1) = f(z)+X-g(z) 4+ p- h(x). If the feasible set K is qualified at =, then
implies VL(z*, \*, u*) = 0, and such \*, u* are called the Language Multiplier.

Now, let us do some exercises together on minimization problems subject to different constraints.

4 Exercises

Exercise 1. Solve the following problem

in (2
Gin 2z +y)

Solution. As there are two variables, so putting n = 2, and let f(z) = 2z + y.

Moreover, there is no inequality constraint, so ¢ = 0.

There is one equality constraint, so m = 1 and let h(z,y) = 2 + 3 — 1.

If (z*,y*) € K is an optimal solution (let us assume that K is qualified at (=, y*) without checking),

then by there exists ;1 € R such that

0 en () )

14z =0
L+2my" =0
() +(y)? =1

Therefore, we have
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Note that ;1 # 0, and from the first two equations, we have

5
2 p—
/’l’l - 4
V5
= 5
2 1 2 1
So, we have (z*,y*) = ( ) < —,—— .
V5’ V6 NN
. 2 1 2 1
It remains to compare the valuesof f | —=, —= | and f [ ———=, — to get the minimum.
V5 V5 5 V5
1
By direct computation, we find that V=|—-——,———= | and f(z", —/5. |
y p (=", y") ( VA [ y) =

Exercise 2. Solve the problem min =z -y.
x2+y?2<1

Solution. Letting f(x,y) = 2y, £ =1, m = 0and g(z) = 2° +¢* — 1.
Assume the feasible set K := {(z,y) € R? : 2* + y* < 1} is qualified, then by [Theorem 2| there
exists A > 0 such that

{A-g(w,y)zo BN A(yx Y _213;)20 0
Vf(x,y)+ Ag(z,y) =0 (x) A <2y) B (0)

Now, we separate it into different cases:

* Casel: A\ =0
In the second equation, this leads to (z,y) = (0, 0).
* Case2: A\ >0
Then, we have
4yt =1
y+2\r =0
r+2\y =0

Combining the second and the third equations gives y + 2\(—2\y) =0 = (1 — 4A\?)y = 0.
1 1
Hence, we have \ = —|—— and y # 0 (think why?). As \ = 7 this would follows that z = —y.

1
Putting back to z> + 4> = 1, wehavex = +—— andsoy = T

V2 V2
So, we now have (z,7) = (0,0), (1/v2, —1/v/2) and (—1/v2,1/V2).
By comparing values on those points to evaluate z - 3, both (1/v/2, —1/v/2) and (—1/+/2,1/V/2) are
1

the optimal solutions, and min z-y = ——. |
22442<1 2
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Exercise 3. Solve the following problem

min (z + 2)
$2+y2:1
y2+22:4

Solution. As there are three variables, so putting n = 3, and f(x,y,z) = x + 2. Since there is no
inequality constraint but 2 equality constraints, so we have ¢ = 0, m = 2 and letting

hl(x7yaz) = .132 +y2 —1
h2($7y72) = y2 +22 -4

By (without checking qualification condition), there exists j1, pt2 € R such that

(V (2, y,2) + mVhi(z,y, 2) + pVha(z,y,2) = 0
4yt =1
\y2+z2:4
(/1 2 0 0
Ol +m |2y |+ |2y =10
— 1 0 2z 0
x2+y2:1
\y2+z2:4
(1—|—2,u1x20
2(p1 + p2)y = 0
= q 14+ 2p2=0
P4yt =1
\y2+22:4

Now, we consider into several cases:

e Casel: y =0
Then, we have © = £1 and z = £2. So, the solution are (z,y, z) = (+1,0, £2).
* Case2:y #0
1
Then, we have j1; = —po. Plug into the first and the third equations, we have v = —z = 5
21

In this case, there exists y, 112 € R\ {0} such that x + z = 0.

By comparing f(£1, 0, +2) and 0, simple calculation gives the optimal solution (z*, y*, z*) = (—1,0, —2)
and min (z+2z)=-3. <

— End of Lecture 3 —
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