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1 Recall
From Week 1, we discuss the follows:

Euler’s first order condition
If f(x) is continuously differentiable, ∅ ≠ K is an open set in Rn and
x∗ ∈ K is an optimal solution to (P ), then

∇f(x∗) = 0

In the previous lecture, we introduce a problem (P ) and the feasible set K as follows:

inf
x∈Rn

f(x) subject to

{
gi(x) ≤ 0, i = 1, . . . , ℓ

hj(x) = 0, j = 1, . . . ,m
(P )

where f, gi, hj ∈ C1, and

K = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , ℓ, j = 1, . . . ,m}

Also, we have the following theorems related to KKT condition and proved in the last lecture.

Theorem 1. Assume that x∗ ∈ K is an optimal solution to (P ), then there exists p0 ≥ 0, p1, . . . , pℓ ≥
0, q1, . . . , qm ∈ R such that the following holds:

1. (p0, p1, . . . , pℓ, q1, . . . , qm) ̸= 0

2.
ℓ∑

i=1

pigi(x
∗) = 0 ⇐⇒ pigi(x

∗) = 0, ∀i = 1, 2, . . . , ℓ

3. p0∇f(x∗) +
ℓ∑

i=1

pi∇gi(x
∗) +

m∑
j=1

qj∇hj(x
∗) = 0

2 Qualification Condition
Definition 1. We say the constraints K is qualified at x ∈ K if pi ≥ 0 and qj ∈ R satisfy

ℓ∑
i=1

pigi(x) = 0

ℓ∑
i=1

pi∇gi(x) +
m∑
j=1

qj∇hj(x) = 0

then it implies that p1 = · · · = pℓ = q1 = · · · = qm = 0.
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Now, when (P ) has an optimal solution x∗ ∈ K and constraints K is qualified, the following
theorem is introduced.

Theorem 2. Let x∗ ∈ K be a solution to (P ) and assume that K is qualified at x∗. Then there exists
λ1, · · · , λℓ ≥ 0 and µ1, · · · , µm ∈ R such that

ℓ∑
i=1

λigi(x
∗) = 0

∇f(x∗) +
ℓ∑

i=1

λi∇gi(x
∗) +

m∑
j=1

µj∇hj(x
∗) = 0

Proof. From Theorem 1, if x∗ ∈ K is a solution to (P ) and K is qualified at x∗, there exist

(p0, p1, . . . , pℓ, q1, . . . , qm) ̸= 0

such that 

ℓ∑
i=1

pigi(x
∗) = 0

p0∇f(x∗) +
ℓ∑

i=1

pi∇gi(x
∗) +

m∑
j=1

qj∇hj(x
∗) = 0

(*)

Now, if p0 = 0, then (∗) becomes{∑
pigi(x

∗) = 0∑
pi∇gi(x

∗) +
∑

qj∇hj(x
∗) = 0

By the Qualification condition, this implies that p1 = · · · = pℓ = q1 = · · · = qm = 0 and hence

(p0, p1, . . . , pℓ, q1, . . . , qm) = 0

Contradiction arises! Thus, we have p0 > 0 .
Dividing the second equality of (∗) by p0 gives

∇f(x∗) +
ℓ∑

i=1

pi
p0
∇gi(x

∗) +
m∑
j=1

qj
p0
∇hj(x

∗) = 0

Thus, it is natural to put λi =
pi
p0

≥ 0 for i = 1, . . . , ℓ and µj =
qj
p0

∈ R for j = 1, . . . ,m.

Let’s see a simple example for the importance of qualification condition.
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Example 1. Solve the following problem

min
x∈R

x, subject to x2 = 0

Solution. As there is one variable problem, so putting n = 1, f(x) = x. Since there is no inequality
constraint, so ℓ = 0. There is one equality constraint, so m = 1, and let h1(x) = x2.
It is easy to see that x∗ = 0 is an optimal solution to the problem as {x ∈ R : x2 = 0} = {0}.
From Theorem 1, there exists (p0, q1) ̸= 0 such that

p0∇f(x∗)︸ ︷︷ ︸
f ′(0)=1

+q1∇h1(x
∗)︸ ︷︷ ︸

h′
1(0)=0

= 0

Thus, p0 = 0, which means the qualification condition of the Theorem 2 is not satisfied. ◀

3 Formal Justification of Theorem 2
For the expansion of Theorem 2, it looks quite similar as “Lagrangian”. Indeed, we can rewrite the
problem min

g(x)≤0
h(x)=0

f(x) as follows:

min
g(x)≤0,h(x)=0

f(x) = min
x∈Rk

(
sup

λ≥0, µ∈R
f(x) + λ · g(x) + µ · h(x)

)
(?)
= sup

λ≥0,µ∈R

(
min
x∈R

f(x) + λ · g(x) + µ · h(x)
)

= min
x∈R

f(x) + λ∗g(x) + µ∗h(x)

Denote L(x, λ, µ) = f(x)+λ ·g(x)+µ ·h(x). If the feasible set K is qualified at x∗, then Theorem 2
implies ∇L(x∗, λ∗, µ∗) = 0, and such λ∗, µ∗ are called the Language Multiplier.

Now, let us do some exercises together on minimization problems subject to different constraints.

4 Exercises
Exercise 1. Solve the following problem

min
x2+y2=1

(2x+ y)

Solution. As there are two variables, so putting n = 2, and let f(x) = 2x+ y.
Moreover, there is no inequality constraint, so ℓ = 0.
There is one equality constraint, so m = 1 and let h(x, y) = x2 + y2 − 1.
If (x∗, y∗) ∈ K is an optimal solution (let us assume that K is qualified at (x∗, y∗) without checking),
then by Theorem 2, there exists µ1 ∈ R such that

∇f(x∗, y∗) + µ1∇h(x∗, y∗) = 0(
2
1

)
+ µ1

(
2x∗

2y∗

)
=

(
0
0

)
Therefore, we have 

1 + µ1x
∗ = 0

1 + 2µ1y
∗ = 0

(x∗)2 + (y∗)2 = 1
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Note that µ1 ̸= 0, and from the first two equations, we have

x∗ = − 1

µ1

and y∗ = − 1

2µ1

Putting into the third equation yields:(
− 1

µ1

)2

+

(
− 1

2µ1

)2

= 1

µ2
1 =

5

4

µ1 = ±
√
5

2

So, we have (x∗, y∗) =

(
2√
5
,
1√
5

)
or
(
− 2√

5
,− 1√

5

)
.

It remains to compare the values of f
(

2√
5
,
1√
5

)
and f

(
− 2√

5
,− 1√

5

)
to get the minimum.

By direct computation, we find that (x∗, y∗) =

(
− 2√

5
,− 1√

5

)
and f(x∗, y∗) = −

√
5. ◀

Exercise 2. Solve the problem min
x2+y2≤1

x · y.

Solution. Letting f(x, y) = xy, ℓ = 1, m = 0 and g(x) = x2 + y2 − 1.
Assume the feasible set K := {(x, y) ∈ R2 : x2 + y2 ≤ 1} is qualified, then by Theorem 2, there
exists λ ≥ 0 such that

{
λ · g(x, y) = 0

∇f(x, y) + λg(x, y) = 0
=⇒


λ(x2 + y2 − 1) = 0(
y

x

)
+ λ

(
2x

2y

)
=

(
0

0

)

Now, we separate it into different cases:

• Case 1: λ = 0
In the second equation, this leads to (x, y) = (0, 0).

• Case 2: λ > 0
Then, we have 

x2 + y2 = 1

y + 2λx = 0

x+ 2λy = 0

Combining the second and the third equations gives y + 2λ(−2λy) = 0 =⇒ (1− 4λ2)y = 0.

Hence, we have λ = +
1

2
and y ̸= 0 (think why?). As λ =

1

2
, this would follows that x = −y.

Putting back to x2 + y2 = 1, we have x = ± 1√
2

and so y = ∓ 1√
2

.

So, we now have (x, y) = (0, 0), (1/
√
2,−1/

√
2) and (−1/

√
2, 1/

√
2).

By comparing values on those points to evaluate x · y, both (1/
√
2,−1/

√
2) and (−1/

√
2, 1/

√
2) are

the optimal solutions, and min
x2+y2≤1

x · y = −1

2
. ◀
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Exercise 3. Solve the following problem

min
x2+y2=1
y2+z2=4

(x+ z)

Solution. As there are three variables, so putting n = 3, and f(x, y, z) = x + z. Since there is no
inequality constraint but 2 equality constraints, so we have ℓ = 0, m = 2 and letting

h1(x, y, z) = x2 + y2 − 1

h2(x, y, z) = y2 + z2 − 4

By Theorem 2 (without checking qualification condition), there exists µ1, µ2 ∈ R such that
∇f(x, y, z) + µ1∇h1(x, y, z) + µ2∇h2(x, y, z) = 0

x2 + y2 = 1

y2 + z2 = 4

=⇒



1

0

1

+ µ1

2x

2y

0

+ µ2

 0

2y

2z

 =

0

0

0


x2 + y2 = 1

y2 + z2 = 4

=⇒



1 + 2µ1x = 0

2(µ1 + µ2)y = 0

1 + 2µ2z = 0

x2 + y2 = 1

y2 + z2 = 4

Now, we consider into several cases:

• Case 1: y = 0
Then, we have x = ±1 and z = ±2. So, the solution are (x, y, z) = (±1, 0,±2).

• Case 2: y ̸= 0

Then, we have µ1 = −µ2. Plug into the first and the third equations, we have x = −z = − 1

2µ1

.

In this case, there exists µ1, µ2 ∈ R \ {0} such that x+ z ≡ 0.

By comparing f(±1, 0,±2) and 0, simple calculation gives the optimal solution (x∗, y∗, z∗) = (−1, 0,−2)
and min

x2+y2=1
y2+z2=4

(x+ z) = −3. ◀

— End of Lecture 3 —
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